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Dedicated to our great friend and colleague Dr. Marta Pacovská who left us for ever a year ago.

Lattice Monte Carlo simulations (an original modification of the Siepmann and Frenkel sim-
ulation variant) was used to study the conformational behavior of heteroarm star copoly-
mers star-(polystyrene; polyisoprene), PS8PI8, in a common good solvent for both types of
arms (tetrahydrofuran) and in selective θ-solvents for both types of arms (in cyclohexane,
i.e., in θ-solvent for PS and in 1,4-dioxane, i.e. in θ-solvent for PI). Results of simulations
were compared with experimental data published by Pispas et al. The coarse graining proce-
dure was performed to match the experimental behavior of heteroarm stars in a good sol-
vent. The computer simulations reproduce all decisive trends of the conformational behav-
ior for both selective solvents. The quantitative agreement between experimental and simu-
lated size characteristics is very good. Simulations yield very detailed information on the
system at the molecular level and show that the incompatible arms significantly segregate in
selective solvents.
Keywords: Monte Carlo simulations; Siepmann and Frenkel simulation; Conformational be-
havior; Polymers; Star copolymers; Solvent effects; Dynamics.

Computer simulations are very important tool for studying dynamics,
conformational behavior, properties and phase diagrams of polymer sys-
tems. Nowadays Monte Carlo and molecular dynamics methods have be-
come an indispensable part of polymer research. Great achievements in
computer technology in recent decades together with development and op-
timization of new efficient simulation algorithms made computer studies of
very complex polymer systems possible. The up-to-date simulations cover
very broad range of scientific topics associated with polymers, ranging from
studies of important biopolymers on one hand (e.g., DNA, proteins and
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peptides)1–3 through a very large field of specific polymer properties (e.g.,
chains in solutions, in pores and at interfaces)4–7 to the research topics con-
cerning self-assembled polymeric nanoparticles on the other8–11. We have
been using lattice Monte Carlo methods for studying properties of self-
assembled polymer systems (polymeric micelles with kinetically frozen
cores) for more than one decade12–18. Recently we developed an efficient
simulation variant for studying conformations of homo- and heteroarm
star polymers. We have described individual simulation steps and presented
the most important characteristics together with general trends of the be-
havior of dilute solutions of heteroarm stars in our earlier publication14.

In this communication, we compare new results of Monte Carlo simula-
tions with experimental data on heteroarm copolymers published by Pispas
et al. some time ago19. Heteroarm copolymer are an important class of poly-
meric materials. Their most decisive properties are similar to those of linear
di- and triblock copolymers rather than to multiblock copolymers. They
form microphase-segregated structures in the melt and self-assembled
nanoparticles in solutions in selective solvents20–22; however, their behavior
differs in a number of details from that of linear block copolymers. For ex-
ample, upon dissolution in selective organic solvents, they form spontane-
ously reversible micelles, but the association number is lower and the criti-
cal micelle concentration is higher compared with linear copolymers of the
same overall composition21. The star architecture promotes solubility in se-
lective solvents and “hairy” heteroarm star copolymers (containing high
numbers of both soluble and insoluble arms) may survive in a mild selec-
tive solvent in unimer form because their conformations with expanded
soluble blocks and partially collapsed insoluble blocks remind spherical
multimolecular micelles formed by a number of diblock chains22.

The aim of the paper is the following: We want to demonstrate that the
relatively simple lattice Monte Carlo simulations are able to reproduce the
experimentally observed behavior of star copolymers very well. We want to
show that computer simulations help to understand their behavior at the
molecular level and to explain and predict all main trends.

SIMULATION METHOD

The simulation method used in this work was described in detail in our
recent papers14 Here we briefly summarize the most important steps. The
program generates random conformations of star copolymers A8B8 with
two types of arms (poorly soluble A and well-soluble B arms) on a simple
cubic lattice with the spacing lC. A rectangular simulation box is composed
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of 100 × 100 × 100 lattice points and contains one star copolymer only. Pe-
riodic boundary conditions are applied in all three directions. The center of
the star is located in the center of the simulation box.

An original variant of the configuration-bias (fully ergodic and micro-
scopically reversible) equilibration algorithm similar to that of Siepmann
and Frenkel23 is applied to get equilibrated conformations. It consists of the
following steps:

1. A bead (j) of an arm (k) is chosen at random.
2. The part of the k-th arm from the j-th bead (inclusive) to the end bead

is erased and its Rosenbluth weight24, Wold, is calculated in the following
way: The end bead is erased first and its weight contribution is calculated
using the formula

w U kTl
l

N = −∑exp( / ) . (1)

The sum applies for all free lattice sites, l, around the (N – 1)-st bead, Ul is
the interaction energy of the N-th bead in the position l (calculated as the
sum of pair interactions uij of the N-th bead with neighboring lattice sites),
k is the Boltzmann constant and T is temperature. The potential energy Ul
of a bead in position l depends only on the nearest lattice neighbors. Other
beads (up to j + 1) are deleted one by one and weights wi are calculated
using Eq. (1). The weight of the j-th bead is wj = exp (–Uj/kT). The total
Rosenbluth weight Wold is given by the product of individual contribu-
tions wi

W wi
i j

N

old =
=

∏ (2)

3. A new conformation of the reconstructed part of the arm k is generated
by the following configuration-bias procedure. First, the position of the j-th
bead is chosen at random and its weight is calculated wj = exp (–Uj/kT). The
bead to be placed next may be located in l different positions. Because the
interaction energy differs for different positions l, the a priori probabilities
for a random selection of individual positions l′ are calculated using the for-
mula

P
U kT

U kTl
l

l
l

′
′=

−
−∑

exp( / )

exp( / )
(3)

where w U kTj ll
= −∑ exp( / ) is the new weight of the j-th bead. Then the self-

avoiding growth of the part that was deleted in the previous step continues
until the arm is completed. The a priori probabilities are evaluated by
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means of Eq. (3), the Rosenbluth weights of beads, wj, and the total weight
of the new part of the arm, Wnew, are calculated using Eqs (1) and (2), re-
spectively.

4. A modified acceptance criterion of the Metropolis type is used to ac-
cept/reject the new conformation of the randomly erased and reconstructed
part of the arm25.

rand(0;1) ≤
W
W

new

old

(4)

CALCULATED FUNCTIONS

In our previous papers, we defined a number of structural characteristics of
the heteroarm star and characteristics of both types of arms that quantify
the conformations and describe the behavior of the system. We calculate
two types of characteristics: (i) mean values of selected distances (average
end-to-end distance and others) and (ii) various distribution functions.
Since the Monte Carlo technique generates a high number of statistically
independent conformations, both types of characteristics may be readily
evaluated. Individual distribution functions are constructed as histograms
in simulations. In this study, we concentrate on selected characteristics that
were measured experimentally by Pispas et al., i.e., on the overall size char-
acteristics. We calculated also other functions such as the distribution of
end-to-end distances for both types of arms, ρEE(RA) and ρEE(RB), i.e., distri-
bution functions of end distances from the center of the star, functions av-
eraged for n arms of a given type. However, we do not present all these
functions in this communication (they are available upon request).

The calculated and discussed distribution functions are the distributions
of radii of gyration. We evaluate the distribution function of the gyration
radii of the whole star, ρG(RG) and distributions of gyration radii of all seg-
ments of a given type, ρg(RgA) and ρg(RgB).

Since very useful information on the spatial distribution of segments A
and B can be obtained from evaluating the distance between the gravity
centers of different types of arms, we calculated distribution functions of
distances of gravity centers of all segments A and of all segments B from the
geometrical center (the branch point) of the star ρTA(r) and ρTB(r), respec-
tively. Since the positions of gravity centers T(A) and T(B) do not have to
coincide with lattice points, these functions are not normalized by the
numbers of lattice points, but by the volumes of narrow spherical layers of
thickness ∆r.
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EXPERIMENTALLY STUDIED SYSTEM

In this paper we address the conformational behavior of two coarse-grained
heteroarm systems that correspond to two systems of star-(polystyrene;
polyisoprene), PS8PI8, heteroarms with Mw = 3.3 × 105 and 7.1 × 105 g/mol
studied experimentally by Pispas et al.19 in tetrahydrofuran (common good
solvent for both types of arms), in cyclohexane (θ-solvent for PS) and in
1,4-dioxane (θ-solvent for PI). These authors synthesized and characterized
several well-defined heteroarm star copolymers with the same number and
almost the same molar mass of two types of arms and studied their solution
behavior in solvents differing in thermodynamic quality and selectivity as a
function of their overall molar mass (i.e., the lengths of arms) by visco-
metry and light scattering. The reported hydrodynamic radii, RH, they ob-
tained by dynamic light scattering measurements, can be easily compared
with results of our simulations.

PARAMETERS OF THE STUDIED SYSTEM

In our simulations, we use a simple set of pair interaction parameters that
are currently used in lattice simulations for block copolymers in selective
solvents. The interaction of polymer segments with the solvent is modeled
indirectly via effective interactions between segments (expressing the dif-
ference between interaction of a segment with an other segment or with
solvent, similarly to the Flory–Huggins approach), i.e., all pair interaction
parameters with the solvent equal zero, uAS = uBS = uSS = 0. For interactions
between beads of the same type in a common good solvent, uAA = uBB = 0.
In a selective solvent for one of blocks, either uAA/kT, or uBB/kT equals
–0.27, which corresponds to current definition of the θ-state for the perti-
nent block (the remaining parameter is zero). The parameter uAB was ob-
tained using a parametrization procedure as described bellow.

In order to compare experimental and simulated data quantitatively (not
only qualitative trends) special attention had to be paid to the coarse grain-
ing and back mapping. An appropriate value of the lattice constant, lC, an
appropriate number of the “Kuhn lattice segments” and the value of inter-
action parameter uAB/kT = 0.12 were obtained by comparing the simulated
contour lengths of arms and simulated radii of gyration of the two
homostar copolymers in an athermal solvent with experimental values. Be-
cause we need to obtain “universal” parameters that describe both experi-
mental systems well, we use the following criteria for the goodness of the
fit
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where subscripts 1 and 2 refer to the experimentally studied systems S1 and
S2 and superscript/subscripts sim and exp refer to results of our simulations
and experimental work by Pispas, respectively. The scatter in experimental
values is taken from ref.19 and simulations provide directly the second mo-
ment of pertinent distribution functions. The positive uAB/kT value reflects
the incompatibility of PS and PI arms. Since simulations yield directly the
radius of gyration, RG, while in experiments hydrodynamic radii, RH, are
easier accessible quantities than RG and values of RH were published by
Pispas, we used the recalculation formula, RH/RG = 0.77 which holds in
good solvents26.

The used characteristics of the experimentally studied systems are listed
in Table I and the characteristics of coarse-grained model systems are listed
in Table II. Interaction parameters that model common good solvents and
θ-solvents for individual blocks are given in Table III.
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TABLE I
Characteristics of the experimentally studied star systems

Star

copolymer

Mw,star

× 10–5
Mw,PS

× 10–4
Mw,PI

× 10–4
NMU,PS NMU,PI LPS LPI

S1 3.30 2.09 2.02 200 300 50 124

S2 7.10 4.36 4.82 420 710 105 293

Mw,star, molar mass of the whole star; MwPS(PI), molar mass of one PS (PI) arm; NMU,PS(PI),
number of monomer units of PS (PI) arm; LPS(PI), contour length of PS (PI) arm.

TABLE II
Characteristics of coarse-grained model systems

Star
copolymer

lc, nm nA nB

S1 1.8 28 69

S2 1.8 57 163

lc, lattice constant; nA (nB), number of Monte Carlo segments.



RESULTS AND DISCUSSION

In order to compare our results with available experimental data, we focus
mainly on the size characteristic, i.e., on radii of gyration. Figure 1 shows
distribution functions of radii of gyration of individual blocks for hetero-
arm stars S2 in all three solvents. As pointed out by Pispas, heteroarm stars
are expanded in a common good solvent for both blocks relatively to the
size of corresponding homoarm stars (with the same total number of arms
of the same type, i.e., in this case with 8 longer and 8 shorter arms of the
same composition) as a result of incompatibility of PS and PI blocks. The
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FIG. 1
Distribution functions, ρg of radii of gyration of PS and PI arms (Rg,sim,PS and Rg,sim,PI, respec-
tively) in star-(polystyrene; polyisoprene), PS8PI8, S2. Solid curves 1 and 2 correspond to PS
and PI arms in a common good solvent (tetrahydrofuran), dashed curves 3 and 4 correspond
to the θ-solvent for PS and a good solvent for PI (cyclohexane) and dashed dot dot curves 5
and 6 correspond to a good solvent for PS and the θ-solvent for PI (1,4-dioxane)
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TABLE III
Interaction parameters that model a common good and θ-solvents for individual blocks

Solvent uAA, kT uBB, kT uAB, kT

Common good solvent 0 0 0.12

θ-solvent for PS, good for PI –0.27 0 0.12

θ-solvent for PI, good for PS 0 –0.27 0.12

uBB, interaction parameter between segments B; uAA, interaction parameter between seg-
ments A; uAB, interaction parameter between different segments.



curve for coarse-grained homostar (i.e., for uAB = 0) is not shown to prevent
overcrowding of the figure. When comparing absolute values on the RG
scale, the following must be taken into account. In both experimental sys-
tems S1 and S2, the molar masses of both types of arms are comparable, but
the relative molecular weight of the PS monomer unit (M = 105) is signifi-
cantly higher than that of PI (M = 68). Further, the flexibility of real PI
chains is higher than that of PS chains and the number of monomer units
forming one “lattice Kuhn segment” is lower, ca. 4.4 for PI and ca. 7.4 for
PS. This results in almost three times longer PI arms compared with PS arms
in our model calculations. Nevertheless, it is necessary to stress that the
used coarse graining and subsequent simulation yield values quantitatively
comparable with experimental values (if accessible) for both blocks. Full
lines 1 and 2 depict the distribution of gyration radii of PS and PI arms in a
common good (i.e., athermal) solvent, respectively. Both curves are almost
symmetrical. That for PS (curve 1) is narrower, a maximum around 18 nm
and the broader one with a maximum around 35 nm (curve 2) corresponds
to PI. In cyclohexane (θ-solvent for PS), PS arms shrink (broken line 3) and
the maximum shifts to ca. 15 nm. Because the concentration of PS seg-
ments is low at longer distances from the gravity center, i.e., at the dis-
tances, where many PI segments are located, the incompatibility effect be-
comes less important, the PI arms relax and the distribution of radii of gyra-
tions shifts to lower values. However, the observed shift is very small be-
cause it is partly compensated by the expansion of central parts of PI arms,
which are being expelled from the central region due to increased concen-
tration of PS segments. The dotted curves 5 (almost overlapped by curve 1)
and 6 depict behavior of PS and PI arms in 1,4-dioxane (θ-solvent for PI).
The shift of the RG distribution towards smaller values is very clear for PI
because the PI arms are longer and flexible. The PS arms are shorter and
they cannot compensate increasing incompatibility penalty by expansion
and therefore their distribution almost does not change. However, the
snapshots (see the next part) suggest that both types of arms segregate,
which results in the formation of pronounced non-centre-spherical confor-
mations. The curves for system S1 are qualitatively similar to those of S2
(not shown).

A comparison of simulated and experimental mean radii of gyration of
the whole star for both systems is shown in Table IV. It is evident that ex-
perimental and simulated data compare very well at the quantitative level
and that the used lattice Monte Carlo simulations are able to reproduce im-
portant features of real systems.
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The extent of segregation of blocks is not an easily accessible quantity by
current experimental techniques, but functions characterizing it can be cal-
culated easily during Monte Carlo simulations. Average distances between
the gravity centers of both types of arms, their distribution and distances of
individual gravity centers from the center of the star (defined as a small
crosslinking core to which the arms are connected) provide the most
straightforward description of conformations of an ensemble of segregated
heteroarm stars. Figure 2 shows distributions of the latter distances. Full
curves 1 and 2 show the distribution of centers of PS and PI, respectively, in
a common good solvent (tetrahydrofuran). We would like to point out that
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FIG. 2
Distribution functions of distances between the centers of gravity of PS and PI blocks and the
geometrical center (the branch point) of the star, ρT,PS(r) and ρT,PI(r), respectively, star-(polysty-
rene; polyisoprene), PS8PI8, S2. The numbering of curves is the same as in Fig. 1
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TABLE IV
Comparison of simulated and experimental mean radii of gyration of the whole star, RG
(in nm)

Star
copolymer

Experiment
THF

Simulation
common

good
solvent

Experiment
cyclohexane

Simulation
θ-solvent

for PS

Experiment
1,4-dioxane

Simulation
θ-solvent

for PI

S1 19.2 19.1 18.2 18.3 16.5 16.5

S2 26.0 26.2 25.1 25.6 22.7 22.2



it concerns probability densities and the presented functions have to be
multiplied by 4πrCG

2∆rCG to get the number fractions of segregated stars
with the gravity center of a given arm in a spherical layer of the thickness
∆rCG in the distance rCG from the geometrical center. The curve for PS is
much higher in the central part than that for PI because the normalization
conditions (for PS and similarly for PI) simply reads

4 1
0

π ρCG
PS

CG CG
2

CGd( )
max

r r r
r

=∫ (6)

and PS arms concentrate in the center because their rmax (the arm contour
length) is shorter. Broken lines 3 and 4 and dotted lines 5 and 6 show corre-
sponding distributions for PS and PI in cyclohexane and in 1,4-dioxane, re-
spectively. The curves describing the distribution of rCG distances in a com-
mon good solvent decrease monotonically and steeply with increasing dis-
tance. This means that in most stars, the gravity centers of both types of
arms overlap with the overall gravity center in the position where the geo-
metrical center is located (the branch point) and the average segregation is
negligible. In both selective θ-solvents, probability densities for small rCG
decrease and the relative contribution of segregated conformation increa-
ses. Curve 6 (corresponding to PI in 1,4-dioxane) levels off for rCG going
to zero. Hence we may conclude that segregation increases with decreasing
quality of the solvent for one of blocks, i.e., with increasing solvent selec-
tivity.
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FIG. 3
A typical simulation snapshot of star-(polystyrene; polyisoprene), PS8PI8, S2 in a common
good solvent. Dark spheres represent PI arms (Monte Carlo segments B), light spheres repre-
sent PS arms (Monte Carlo segments A) and shadow areas emulate 3D image.



The conformation behavior can be well documented by typical snap-
shots. Figure 3 shows a snapshot of the coarse-grained system S2 in a com-
mon good solvent. The picture shows a conformation with fairly interpen-
etrated longer PI and shorter PS arms. Figure 4 shows the same star S2 in a
θ-solvent for PS. The short PS arms are parly collapsed and the conforma-
tion reminds of a polymer micelle. The last snapshot (Fig. 5) shows a typi-
cal heteroarm star conformation in a θ-solvent for long PI arms. In this
case, the collapse of long PI arms results in expulsion of PS arms from the
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FIG. 4
A typical simulation snapshot of star-(polystyrene; polyisoprene), PS8PI8, S2 in the θ-solvent
for PS and a good solvent for PI. Dark spheres represent PI arms (Monte Carlo segments B) and
light spheres represent PS arms (Monte Carlo segments A)

FIG. 5
A typical simulation snapshot of star-(polystyrene; polyisoprene), PS8PI8, S2 in the θ-solvent
for PI and a good solvent for PS. Dark spheres represent PI arms (Monte Carlo segments B) and
light spheres represent PS arms (Monte Carlo segments A)



region rich in PI beads and in formation of a pronounced segregated struc-
ture.

CONCLUSIONS

We have shown that relatively simple lattice Monte Carlo simulations are a
suitable tool for studying conformations of heteroarm star copolymers in
solvents differing in thermodynamic quality for individual blocks. In a
common good solvent, their arms are interlaced, but the incompatibility of
PS and PI arms results in expansion of the star volume compared with those
of corresponding homoarms.

In selective solvents, the worse-soluble arms A shrink and soluble arms B
are expelled from the region occupied by concentrated arms A, which re-
sults in the formation of a non-spherical segregated conformations.

The observed effects (size changes, tendency to segregate and others) are
more pronounced when the thermodynamic quality of the solvent for PI
deteriorates, because these arms are longer.

The authors would like to acknowledge financial support of the Grant Agency of the Czech Republic
(grant No. 203/03/0262).
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